sucrose

2024-06-03by admin0

Sucrose structural formula

Structural formula

Business number 018Q
Molecular formula C12H22O11
Molecular weight 342.3
label

α-D-Glc-(1→2)-β-D-Fru,

D(+)-Saccharose,Sucrose,

Sugar,

Saccharose,

beet sugar,

granulated sugar; white granulated sugar; soft white sugar,

β-D-Fructofuranosyl-α-D-glucopyranoside,

α-D-Glucopyranosyl β-D-fructofuranoside,

Cane sugar,

Genetic engineering research reagents

Numbering system

CAS number:57-50-1

MDL number:MFCD00006626

EINECS number:200-334-9

RTECS number:WN6500000

BRN number:90825

PubChem number:24899768

Physical property data

1. Properties: Colorless monoclinic wedge-shaped crystals, white particles or crystalline powder. Sweet and hygroscopic

2. Relative density (g/mL, 25/4℃): 1.587

3. Relative vapor density (g/mL, air=1) : Undetermined

4. Melting point (ºC): 185~187

5. Crystal phase standard combustion heat (enthalpy) (kJ·mol-1): -5640.4

6. Crystal phase standard claims heat (enthalpy) (kJ·mol-1): -2226.1

7. Refractive index : Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): Undetermined

10. Autoignition point or Ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturated vapor pressure (kPa, 60ºC): Undetermined

p>

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined Determined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (%, V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Easily soluble in water, slightly soluble in ethanol, insoluble in organic solvents such as ether and ethyl ester. .

Toxicological data

None

Ecological data

None

Molecular structure data

1. Molar refractive index: 70.85

2. Molar volume (cm3/mol): 192.8

3. Isotonic specific volume (90.2K): 628.7

4. Surface Tension (dyne/cm): 113.0

5. Polarizability (10-24cm3): 28.09

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): -3.7

2. Number of hydrogen bond donors: 8

3. Number of hydrogen bond acceptors: 11

4. Number of rotatable chemical bonds: 5

5. Number of tautomers:

6. Topological molecular polar surface area (TPSA): 190

7. Number of heavy atoms: 23

8. Surface charge: 0

9. Complexity: 395

10. Isotopic atoms Quantity: 0

11. Determine the number of atomic stereocenters: 9

12. Uncertain number of atomic stereocenters: 0

13. Determine chemical bond positions Number of stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

Stable under normal temperature and pressure.

Storage method

Packaging in food-grade plastic bags and woven bags. Store in a cool and dry place.

Synthesis method

1. A large amount of sucrose comes from cane sugar and beet. Sugar cane contains about 15-20% sucrose, and beet contains 10-17%. There are also different contents in various other fruits, seeds, leaves, flowers, and roots. Squeeze out the liquid from sugar cane or extract sugar juice from sliced ​​beets with water. Use lime clarification method or combined with sulfurous acid filling method to remove impurities in the sugar juice. After filtration, vacuum evaporate the filtrate to thicken, recrystallize and separate to obtain jaggery, and then Refined sugar is obtained through decolorization and recrystallization.

2.Dissolve ordinary sucrose in water, filter, and then evaporate under reduced pressure. Pure product available.

Purpose

1. Sucrose is the most commonly used sweetener. The annual production and consumption of sucrose in the world is about 80 million to 100 million tons. It can also be used as chemical raw materials, such as the synthesis of sucrose lipids, etc.

2. Used for the preparation of analytical reagents and biological nutrients.

3. Sucrose is the most common edible sugar and is also used to make citric acid, caramel, invert sugar, transparent soap, etc. , sucrose can inhibit bacterial growth at high concentrations and is used in medicine as a preservative, antioxidant and tablet excipient.

extended-reading:https://www.bdmaee.net/k-15-catalyst/
extended-reading:https://www.newtopchem.com/archives/40376
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Catalyst-8154-NT-CAT8154-polyurethane-catalyst-8154.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/CS90-catalyst–CS90-polyurethane-catalyst-CS90.pdf
extended-reading:https://www.bdmaee.net/benzyldimethylamine/
extended-reading:https://www.bdmaee.net/amine-catalyst-a-300/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2016/05/Lupragen-N205-MSDS.pdf
extended-reading:https://www.newtopchem.com/archives/44834
extended-reading:https://www.bdmaee.net/lupragen-n106-strong-foaming-catalyst-di-morpholine-diethyl-ether-basf/
extended-reading:https://www.bdmaee.net/dabco-33-s-addocat-106-teda-l33b/

Leave a Reply

Your email address will not be published. Required fields are marked *